

Version 2023 : October 2022

What's New in GibbsCAM 2023

Contents

Part Organization And Ease-of-Use	
Categories for Coordinate Systems and Workgroups	4
Operation Groups in Op Manager	4
Active and Inactive Operations	4
WFO GUI (Post Processor dialog, Workfixtures tab): By CS	6
DCD: Work Areas	6
Milling	
Cylindrical Milling from Cylindrical Profiles	
Mill Bore	
Mill Roughing: Do Not Plunge	9
Extended Drill Cycles - Holes	

General Turning 12

PrimeTurning	. 12
Multifunction Insert Drill Turning and Offset Drilling	
Turning Tool Rake and Back Relief	13
Lathe Drilling With Counter-Rotating Live Tool	14
Cutting Load Variation	. 14
VoluTurn: Active Chip Thickness Control	15
Elliptical Turning: Inside Diameter, and Xr Stock Offset	. 15

Thread Turning 16

Face Threading	
Variable Pitch Threading	
Multi-Pitch Threading	
Position Tool Front	17

Other Enhancements And Improvements

Improvements	
Non-Z-Aligned Cylindrical Stock and Clearances	18
User Toolchanges From Alternate Origins	18

Tapered Surface Extrusion	19
Fixture Visibility Toggle in Simulation	19
High-Feed Collision Reporting in Simulation	19

Miscellaneous	
Updated Support for Third-Party Libraries	
CAD Add-Ins	
Advanced Display	
System Requirements	

5-Axis	21
	22
Link tab: Custom approach / Custom retract	22
Surfaces > Flowline: Flow direction	23
Multi blade machining: Support for full collision check	24
Multi blade machining: Parameters for First cut	24
Multi blade machining: Separate selection of blades and fillets	25
Multiaxis: Rest finishing	25
Multiaxis Roughing: Part definition of Fixture surfaces	26
Multiaxis Roughing / Links > Retracts: Interpolation tilt angles	26
Multiaxis Finishing: Support for Multiple Surfaces	27
Rotary machining > Utility: Feedrate for links	27
Rotary machining: Part definition > Containment	27
Rotary machining: Depth steps	28
Rotary machining: Filtering out small regions	29
Deburring: Limit edge detection area to Mesh containment bodies	29
Deburring: Spiralize closed contours	30
Wireframe > Link tab > Retracts: Automatic clearance height	32
Wireframe Engrave: Lead-In Type Vertical profile ramp	32
Wireframe 2-Axis Rough: Intermediate Slices	33
Triangle Mesh	35

Active and Inactive Operations

In previous versions of GibbsCAM, posting or simulating Selected Ops could change 5axis solution selection and other program properties unexpectedly. These functions have been replaced with a new op status for inactive operations, which are kept in the part file but do not participate in or influence the NC program. The Inactive Operation

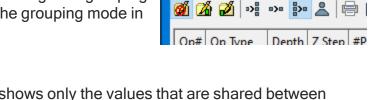
4

Part Organization and Ease-of-Use

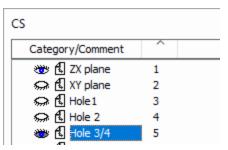
Categories for Coordinate Systems and Workgroups

Part Organization and Ease-of-Use

Coordinate Systems (CSs) and Workgroups (WGs) can now be organized into categories that appear throughout the system. You can create categories from the main toolbar using the Coord Systems or Workgroups dropdowns, or by using these steps in the CS or Workgroup dialog:


- 1. In the CS or Workgroup dialog, drag and drop to add CSs and WGs to categories.
- 2. To rename a category, click it twice.
- 3. To make all CSs or WGs in a category visible or invisible, toggle the eyeball for that category.

CS and WG dropdowns throughout the system, such as Machining CS and Patterns, have been updated to show categories.


Operation Groups in Op Manager

Grouped operation tiles now appear in Op Manager. You can use the Op Manager toolbar to change the grouping mode, which is synchronized with the grouping mode in the Op Tile list.

- When collapsed, each group shows only the values that are shared between operations in that group. Editing shared data in the operation or process changes the corresponding value for all operations in that group.
- When expanded, each operation's data is fully populated individually, and the data can be edited for each individual operation.

Op Manager - All Ops

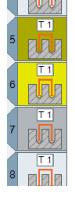
CS		
Category/Comment	^	
🗉 👋 🧰 Workgroup		
New CS		
New Category		

feature can be used to work with parts as multiple programs in sequence, to experiment with alternative programming strategies, or for any other purpose where an op needs to be retained in the file but excluded from the program.

Op active/ Op inactive status persists when op selection is changed and even when the part is saved and reloaded. You can also view or set active/inactive status using Operation Manager.

To activate or deactivate ops, do one of the following:

- Right-click an op tile selection. Context-menu choices now include Activate Selected Ops and Deactivate Selected Ops.
- Use Operation Manager to batch-activate/deactivate operations.
- Use Edit > Operation and click Activate All Ops or Deactivate Unselected Ops.
- Use Plug-Ins > Main; the Find Operations dialog box has a Look In checkbox for Inactive Ops.


Colors. Op tiles for inactive ops have a dark gray background when unselected, dark yellow when selected. Toolpath for inactive ops is drawn in gray rather than orange (when using default colors). Note that inter-operation connection moves are not drawn for inactive ops, since they are not participating in the program.

Affected functions. Inactive ops do not participate in any of the following GibbsCAM functions: Post Processing, Simulation, Material State Calculation (for Material Only or Start at Op), Program Error Checking, Sync Control, WFO assignment, Reporter output, and Multipart (TMS and Part Instancing).

Redo and Op Modifiers. If you perform a manual Redo on an inactive op, or if you add an op modifier to it, then its status changes to Activated. However, batch Redo actions skip inactive ops by default, and their names have been changed to Redo Active Ops and Redo Selected Active Ops.

Simulation. The Skip Unselected Ops function now preserves material state. This is equivalent to setting multiple Start at Op triggers. Selected ops will play in detail; unselected ops will have material removed immediately, and playback will skip ahead to the next selected op, so selected ops are always played in the correct program and material context. If you want to use the pre-GC2023 functionality, which skipped material removal for unselected ops, simply deactivate the ops instead of deselecting them, and the program will simulate as if they were not present.

Large Icons
 Activate Selected Ops
 Deactivate Selected Ops

WFO GUI (Post Processor dialog, Workfixtures tab): By CS

The **Workfixtures** tab of the **Post Processor** dialog now provides a third view, By CS, which shows operations and WFOs grouped by CS. If you prefer using one WFO per CS, you may find this helpful to better understand and manipulate your program.

Options	Workf	ixtures S	pec	ial In	fo		
🗸 Use	Workfix	tures					
Optio	Ins						
∠ C	ombine l	dentical W	/FO	s	One WFO	Per Part 🔄 Us	se Local Shifts
	0			50	@ D. CC		
Ов	y Operat		y w	FU	By CS		
	CS	Workfixt	ure	Ъ	Offset	Orientation	Operations
	2	G54	\sim	Ъ	X0 Y0 Z0		1,2,3,4
	3	G54	\sim	Ъ	X0 Y0 Z0		5
	4	G54	\sim	Ъ	X0 Y0 Z0		6

Compared to other views. From the By CS view (unlike the By WFO view) multiple CSs can be assigned to the same WFO. The same status icons used in the By Operation view notify you when the assigned WFO involves an origin or angle shift from the CS. If operations programmed in a single CS are assigned to multiple WFOs, that CS will show "(multiple)" in the WFO column, indicating you should instead use the By Operation view to better understand or change this WFO assignment.

DCD: Work Areas

L

General Comments M	Machine Setup Work Areas Machining Preferences	
Work Areas My Work Area 1 My Work Area 2 A Negative A Positive <i>New Work Area</i>	Name My Work Area 2 1st Rotary Axis (B101) Minimum 1.1 Maximum 2nd Rotary Axis (A101) Minimum Minimum Maximum Maximum Default Work Area Update Ops	~

When a machine has two or more rotary axes, the Document Control Dialog (DCD)'s upper half has a new tab, **Work Areas**. This lets you view work areas defined in your MDD and, for each part, you can create work areas with user-specifiable values for such parameters as minimum and maximum angles for rotary axes. If you specify a default Work Area, it is used for all newly created operations.

Effect on Operations. If you change a part-defined Work Area, the Update Ops button becomes available, allowing you to update any operations that were assigned to that Work Area before your changes. If multiple identical Work Areas are defined, all but the first display red to inform you that these Work Areas cannot be matched.

Default Work Area

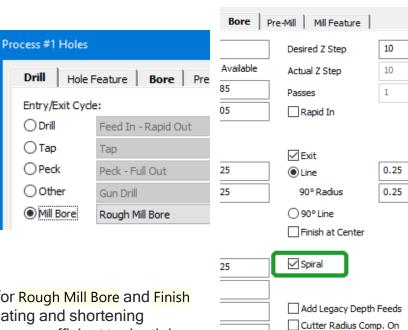
In parts that have Work	Areas defined, th	ne Op
Data dialog provides a	Default Work Area	
dropdown.		

My Work Area 1	~
My Work Area 1	
My Work Area 2	
A Negative	
A Positive	
Unlimited	

Milling

Cylindrical Milling from Cylindrical Profiles

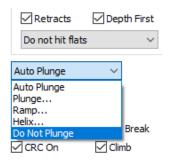
Using the Profiler, you can select profiles in Slice Cylinder mode and use them in Cylindrical Milling. Remember that Slice Cylinder mode aligns the slice cylinder around the CS depth axis, so you will need to activate an appropriate CS in your workspace for that use (such as the XY plane on a C-axis mill/turn), and select a different CS as your machining CS in the process (such as the YZ plane on a C-axis mill/turn). If you work with these operations frequently, consider using **File > Preferences > Interface Preferences** to uncheck Activate Machining CS on Op Load.



- If you select a closed wrapped profile, it is machined as a cylindrical boss or pocket, with the cutting side determined automatically by the solid that is profiled. This is like extracting the profile as geometry, unwrapping it, and machining the unwrapped geometry.
- If you select two loops that circumscribe the part, you can automatically machine a groove or ring. This is like creating wall geometry with the wrapped length of the groove or ring, with air walls at both ends. Note that some machining strategies, such as Ramp Down Contouring, will automatically extend the unwrapped groove in order to "wind up" and avoid unnecessary retracts.

Toolpath generated from this mode, like all Cylindrical Milling toolpath, is true analytic wrapped toolpath. Because it contains only lines and arcs, it can be output in cylindrical interpolation mode for your NC control. It is not gouge-checked against the solid, and always holds the tool on-center; you must use an appropriately-sized tool to avoid gouges in radial toolpath. If, instead, you prefer close fidelity to the solid over efficient NC code, you might want to use the 5-Axis **Rotary** strategy to hold the tool off-center, at the cost of longer and more complex segmented linear toolpath.

Mill Bore


A new option in the Mill Holes: Rough Mill Bore strategy allows Spiral boring. This option cuts a spiral out to full diameter at each Z step, in contrast to Helix Bore which helixes down in Z before stepping out to the diameter. Spiral boring produces a more consistent tool load without full engagement, which lets you substantially increase your cutting feedrate, cut depth, or both, to clear the bore more quickly.

Transitions between depths for Rough Mill Bore and Finish Mill Bore are improved, eliminating and shortening redundant depth moves. This more-efficient toolpath is enabled by default; to disable it, check Add Legacy Depth Feeds on the **Bore** tab, to allow subroutine output on older mill post processors without a post modification.

Mill Roughing: Do Not Plunge

A new option in Mill **Roughing** strategies Offset and Offset With Cleanup lets you omit "cavity" cutting areas. When the entry style is set to Do Not Plunge, the tool enters the part only horizontally from air; enclosed pockets are not machined. This is useful for certain types of high-feed mill tools that are incapable of plunging or ramping. Remaining enclosed areas can be machined with a tool capable of ramping in a followup process with Material Only enabled.

Climb

Conventional

Extended Drill Cycles - Holes

Default drill cycle support is extended to the following cycle types:

• Peck Tap - Full Drill Hole Feature Bore Pre-Mill Out Entry/Exit Cycle: Peck Tap - Chip Feed In - Rapid Out Breaker Тар Variable Peck -Peck Peck - Full Out Full Out Other Peck - Full Out · Variable Peck -Peck - Chip Break Other Gun Drill Mill Bore Var. Peck - Full Out Chip Breaker Var. Peck - Chip Break O Mill Bore Rough Mill Bore Gun Drilling

For Variable Peck cycles, the **Peck Depths** dialog gives you fine control over the toolpath you want.

Please Note:

This feature may require a post modification if you require canned cycle output for your NC control. Or, if you are already using macro cycles for any of these types, you can continue to do so without problems.

Milling

Entry/Exit Cycl	e:					Entry/Exit Cycle	:
O Drill	Feed In - Rapid Out	~ ~				Orill	Feed In - Rapid Out
	Тар					() Тар	Тар
Peck		~				○ Peck	Var. Peck - Full Out
-	Var. Peck - Full Out	~				Other	Gun Drill
○ Other	Gun Drill	\sim					Gun Drill Bore
○ Mill Bore	Rough Mill Bore	\sim					Bore Fine Bore Back Bore
							Material
	Material					RPM	14000
RPM	14000					Feed	95
Feed	95					Dwell	0
Dwell	0					Clearance	
						Rev. Spin Dir	. During Approach
Clearance	0.05					Pilot Depth	0.5
) Peck Amount	ts					Approach Feed	10
🖲 % of Tool Di	ameter		Peck Depths		陸 平 -	Approach RPM	100
st Peck Depth	100 %						/Speed at Depth
eck Reduction	10 %		Peck Num	Peck Depth	Total Depth	-	ot, then Reduce
lin. Peck Depth	25 %		1	Реск Depin 0.2500	0.2500	Final Feed	10
			2	0.2250	0.4750	Final RPM	100
View Ped	ks Depths		3	0.2000	0.6750	Prog. Stop a	fter Approach
Do Not Modify	peck Depths \sim		4	0.1750	0.8500	Prog. Stop a	
						Prog. Stop a	
						Stop Spindle	

General Turning

PrimeTurning

GibbsCAM 2023 supports Sandvik Coromant's PrimeTurning highperformance turning strategy and the CoroTurnPrime Type A and Type B inserts. Roughing and Finishing are both supported through the new **PrimeTurning** process. This strategy enters the part gently, and can cut either direction with the tool, automatically adjusting the feedrate as appropriate to maintain correct chip thickness. **PrimeTurning** in GibbsCAM works with all the usual GibbsCAM turning features, including Auto Clearance and Material Only.

, including Ac		ance an	id Material Only.	
PrimeTurning				🖉 🕞 🖷 🗕 🗙
PrimeTurning				
Cutting Strategy Rough O Fin			5 ↓ /	5 5
Forward	● OD ○ Fro ○ Fro			† ×r
Cut Depth 0.03 Min: 0.01 Max: 0.05	0		Rough Style Material Only Clearance Full	0.01
Lead-in Radius	0.02633	in	Fin. Stock ±	0
Lead-out Feed			Xr Stock ±	0
Lead-out Rate	0.006	ipr	Z Stock ±	0
Lead-out Length	0.078	in	Cutting Load Varia	ation
			☑ Coolant ☑ Flood	
Max RPM	1000			
SFPM	1000			
Entry Feed	0.01	ipr	Cut Direction Axes	7+ 🖓 7-
Contour Feed	0.01	ipr	Mach CS: 1: ZX p	
Comment				< >

The Minimum Cut Depth and Maximum Cut Depth for your selected CoroTurn Prime insert is shown on the process dialog for convenience. Select your desired Cut Depth, Lead-in Radius (recommended value is the Cut Depth), and how much to slow the tool during the Lead-out. See your local Sandvik Coromant representative for additional advice about how to optimally configure this process.

Multifunction Insert Drill Turning and Offset Drilling

A new tool type is added: Multifunction Insert Drills. This tool type represents inserted drills that have a periphery insert that can perform turning and boring, such as the Sandvik Coromant CoroDrill 880 series. The tool body and periphery insert are defined in a single tool tile, allowing GibbsCAM to seamlessly switch between turning, lathe drilling, and mill drilling operations without extra retract and toolchange motion. Two tool offsets must be defined. The length offset programs the center of tool body (like a conventional drill), while the periphery offset programs the corner of the periphery insert (like a conventional turning tool).

A new option in Lathe Holes allows the use of MFI Drill tools for radial-offset drilling. Enter an offset amount between and the tool radius to create a hole that is slightly larger than your tool. You can also select whether to output toolpath with the length offset at the center of the tool (typical for drilling) or with the periphery offset at the periphery insert corner, which may provide better dimensional control.

Turning Tool Rake and Back Relief

New fields have been added to turning tools to more accurately define the 3D geometry of the tool. Most types of turning inserts now have a Back Relief field to specify the insert's back relief in degrees. Additionally, Custom and Other toolholders can define that the insert is held with axial and radial rake (holding the insert slightly tilted out of the turning plane). Note that insert rake is used for visualization only and does not affect toolpath generation or the cutting plane used in the process. For tools that are used to cut in a different plane, such as Sandvik CoroCut QD Y-axis parting tools, you should instead use Intermediate Tooling to establish the new cutting plane.

Custom Holder	🖷 平 — 🗡
Define Holder	Dimension As: Tool Holder V Primary Cutting Direction
Type: Solid 🗸	\$_\$
Use Selected Solid	F S V
Show Solid	in Tool Catalog View
Holder Defined At:	Lead Angle (L): 95 • Axial Rake: 0 • • • • • • • • • • • • • • • • • • •
	Holder Offset
	Shank Size (5); 0 in
	F Dimension (F): 0 in
	Gage Tip Radius; 0.0315 in Angle; 4.5000000

Lathe Drilling With Counter-Rotating Live Tool

A new option in Lathe Drilling, Tool Spindle On, automatically commands the live tooling spindle to be spinning the opposite direction from the lathe spindle with a specified RPM. This increases the effective spindle speed and can significantly boost material removal rates, especially when performing simultaneous centerline drilling and OD turning with different toolgroups.

Use Auto Clearance

✓ Tool Spindle On

Tool Spindle Speed: RPM | 1000

Please Note: This feature may require a post upgrade.

Cutting Load Variation

Most Turning processes now offer Cutting Load Variation functions. The exact nature of this function depends on your NC control and postprocessor, but it usually involves regular oscillation of either the cutting feedrate or spindle speed to suppress resonance-induced chatter and improve chipbreaking.

2 SLOCK ≖ Cutting Load Variation oolant CNC manufacturers that offer options to vary the spindle speed include Haas and Soraluce (Spindle Speed Variation or SSV), Okuma (Harmonic Spindle Speed Control, HSSC, and Variable Spindle Speed Threading, VSST), and DMGMori (Alternating Speed).

CNC manufacturers that offer options to oscillate the feed axis include Star (High Frequency Turning or HFT), Citizen and Miyano (Low Frequency Vibration or LFV), and Tsugami (Oscillation Cutting).

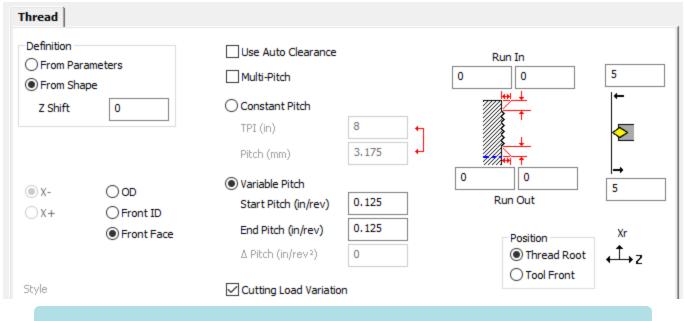
Please Note: This feature requires a post upgrade.

VoluTurn: Active Chip Thickness Control

The VoluTurn process dialog offers Active Chip Thickness Control. ACTC allows VoluTurn to control the chip thickness during the cut by varying the feedrate as the instantaneous cut depth changes. Specify a target thickness, minimum chip thickness, and the maximum feedrate to be used when the instantaneous cut depth is very small.

Active Chip Thick		
Target Thickness	0.01	
Minimum Thickness	0.005	
Max Feed	0.02	ipr

Elliptical Turning: Inside Diameter, and Xr Stock Offset


The Elliptical Contour process dialog offers the ID approach type to let you cut elliptical bores inside solid parts. You must select the surface to be machined, as well as a spine curve which runs within the bore. Creating a smooth spine curve close to the center of the bore will produce better quality toolpath.

Elliptical Contouring also now supports a radial (Xr) stock offset, for both ID and OD cutting.

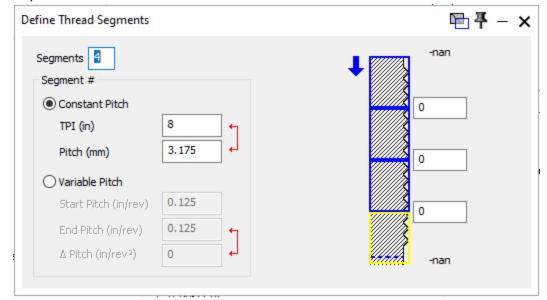
Thread Turning

Face Threading

The Thread process dialog offers the Front Face approach type, for face threading or scroll threading. This type of machining produces a spiral thread on the face of the part.

Please Note: This feature may require a post modification if you require canned cycle output for your NC control.

Variable Pitch Threading


Select the Variable Pitch radio button in the Thread process to produce variable pitch threads. Specify values for Start Pitch and End Pitch to blend between them, or for Start Pitch and Δ Pitch to increment the pitch by the specified amount every revolution.

Please Note: This feature may require a post modification if you require canned cycle output for your NC control.

Multi-Pitch Threading

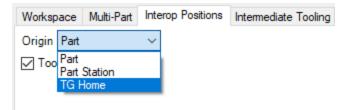
Check the Multi-Pitch checkbox to activate Multi-Pitch Threading. Click Define Segments to open the **Thread Segments** dialog where you specify the segments of your thread (in Z for OD/ID threading, or X for Face Threading). Enter the segment count and the boundaries between each segment. Selecting a segment lets you define the pitch for

that segment (either constant or variable pitch). Multiple thread features will be output along your thread with the specified pitch changes, to produce a continuous thread with different pitches.

Please Note: This feature may require a post modification if you require canned cycle output for your NC control.

Position Tool Front

The Position group now allows the selection of either Thread Root or Tool Front to define the values in the thread diagram. Thread Root means that the numbers define the thread itself; the Start Z value, for example, is where the thread starts on the part. Tool Front means that the numbers define the position of the front of the tool, so Start Z will be where the tool is when the cutting starts. This setting can be useful cutting threads up to a square shoulder, when the precise thread length is less important than the shoulder location. With a Laydown-style (LT) thread insert, selecting Position Tool Front and also selecting the alternate touchoff point at the front of the tool in the tool dialog will typically cause the exact start/end numbers that you type in this dialog to be output in the G-code.


Other Enhancements and Improvements

Non-Z-Aligned Cylindrical Stock and Clearances

New options are enabled when creating an MDD in Machine Manager. Non-spinning part stations using cylindrical stock and Clearance Volumes enabled can now choose a Face Held of X, Y, or Z, minimum or maximum, instead of being restricted to Z minimum. This allows the use of Cylindrical or Part-defined stock types on 4-axis vertical mills while retaining the correct Z orientation.

User Toolchanges From Alternate Origins

On machines supporting User Toolchanges, you can now select the origin for the toolchange on the **Interop Positions** tab of the DCD.

- Part is default behavior from before GC2023. It defines the toolchange location relative to the part origin. This is useful in many cases, such as close turret rotation on a typical lathe setup.
- Part Station defines toolchange location relative to the part station origin without the part offset.
- Machine (not available for Generic MDDs) defines toolchange location relative to the machine root, which lets toolchange occur in the same machine location regardless of the part setup.
- TG Home defines the toolchange location relative to the toolgroup home location. Note that selecting an alternate origin changes the meaning of the input coordinates but does not affect output by default. The postprocessor may also choose to change the output mode based on your origin selection; this will require a post modification.

Tapered Surface Extrusion

GibbsCAM 2022 introduced a new surface modeling command, Extrude. GibbsCAM 2023 extends this command with a Taper field, as in the equivalent solid modeling command.

Tapered solid extrusions are also more robust and efficient in this release

Fixture Visibility Toggle in Simulation

All simulation modes now include an extended Fixture Visibility toggle. Rather than only being able to set fixtures to opaque (=) or partially transparent (=), you can now also make them invisible (=).

Op Sim Rendering	🖻 平 — 🗙
🌕 💐 🛃 🎄 🖌 🗟 🏭 🚼 🎗	
』	

High-Feed Collision Reporting in Simulation

All simulation modes include a new Collision/Program Error setting: Cuts above _____ mmpm/ipm are collisions. By configuring this setting, you can tell simulation to report collisions if a process feeds into material at a feedrate higher than you believe is safe (for example, VoluMill and Advanced 3D both have High Feed modes). This can help you forsee and prevent broken tools and damaged parts, even when rapid is not being used.

Miscellaneous

Updated Support for Third-Party Libraries

All the libraries included in GibbsCAM 2023 have been updated to the latest version available to us at the time of integration.

GibbsCAM 2023 incorporates or is compatible with the following third-party libraries:

- ModuleWorks 2022.04
- VoluMill
- OPTICAM
- Tool libraries for Harvey Tools and Helical

CAD Add-Ins

GibbsCAM 2023 incorporates or is compatible with the following third-party Add-Ins:

- Cimatron 15
- Cimatron 16
- Autodesk Inventor 2010 and newer (64-bit)
- Solid Edge 100 (ST) and newer
- SOLIDWORKS 2011 and newer

Advanced Display

GibbsCAM 2023 leverages the capabilities of advanced video card drivers. Although it should be standard practice always to use the latest versions of all drivers and service packs, it is especially important to upgrade to the latest video card driver version when using GibbsCAM 2023 to assure the best display performance and functionality.

System Requirements

Minimum and recommended configurations for GibbsCAM 2023 are as follows:

	Minimum	Recommended			
OS	Windows 10, Windows 11	11, or Windows Server 2019			
CPU	Intel: 5 th -generation or newer	Intel: Core i9, i7, or i5 with four or			
	(Core i3 or better)	more cores			
	AMD: Desktop family 17h	AMD: Ryzen or Threadripper			
RAM	4+ GB of total RAM	16 GB of total RAM			
Video	3D-accelerated video card with	NVIDIA video card with 2+ GB of			
video	1+ GB of video memory	video memory			
Disk	8+ GB free disk space	e to install the software			

5-Axis

Enhancements and improvements since GibbsCAM 2022 include:

- Surfaces, Wireframe, and Contouring: Support for Custom approach / Custom retract
- Surfaces > Flowline: Flow direction
- Multi blade machining: Support for full collision check
- Multi blade machining: Parameters for First cut
- Multi blade machining: Separate selection of blades and fillets
- Multiaxis machining: Rest finishing
- Multiaxis finishing: Support for multiple surfaces
- Multiaxis roughing: Part definition of Fixture surfaces
- Multiaxis roughing / Links > Retract: Interpolation tilt angles
- Rotary machining > Utility: Feedrate for links
- Rotary machining: Part definition > Containment
- Rotary machining: Depth steps
- Rotary machining: Filtering out small regions
- **Deburring:** Limit edge detection area to a Mesh containment body
- Deburring: Spiralize closed contours
- Wireframe
 - Link tab > Retracts: Automatic clearance height
 - Area: Extend/Trim
 - Floor finishing > Sorting: Spiral cutting method
 - Engrave: Lead-In Type Vertical profile ramp
 - Engrave: Sorting options (Selection sequence, Left to right, etc.)
 - Engrave > Sorting: Start from options (Interior corner, etc.)
 - Engrave (Rough): Rest rough
 - 2-Axis Rough: Intermediate Slices
 - 2-Axis Rough: Draft Angle
- Triangle Mesh
 - Adaptive Roughing: Remove stock pillars
 - Adaptive Roughing: Over machine
 - Parallel cuts: Exclude flat areas
 - Constant Z Undercuts: Machine flatlands
 - Rough: Minimum depth step
 - Flatlands: Undercuts
 - Link tab / Retracts: Radial clearance
 - Roughing tab / Advanced: Shift distance (stepover %)

Link tab: Custom approach / Custom retract

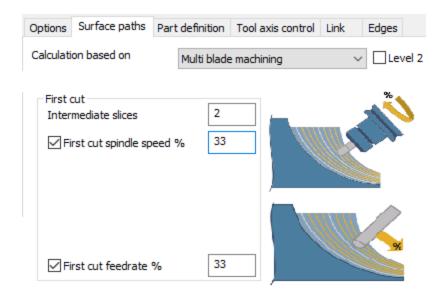
For calculation strategies Surfaces, Wireframe, and Contouring, the **Link** tab now lets you manually define custom approach and/or retract links. For each custom entry/exit link, you can provide a list of *n* points and optionally, tool orientation and side vectors for each point. The approach and retract links follow the points and, from there, they connect to the contour. This overcomes a limitation where the regular retract would collide and could not be resolved automatically, and it allows for 6-axis re-orientation on the retract path.

5-Axis

First entry Custom approach Last exit Custom retract Approach path General Start from dearance	 Don't use Lead-Jut Don't use Lead-Out Retract path (x, y, z)
Approach path Approach path General	Retract path
Approach path General	
General	
	(x, y, z)
⊡ Start from dearance	(x, y, z)
	(x, y, z)
Table of definitions # Tip point	Inspector of selection
1 0.000000, 0.000000, 0.000000	Tip point (x, y, z)
2 1.000000, 2.000000, 3.000000	
	☑ Orientation (i, j, k)
	0 1 0
	Side (r, s, t)
	2 0 3
Add definition	

Surfaces > Flowline: Flow direction

For surface-based machining, pattern Flowline, new Flow direction choices let the pattern flow along the parametric dimensions (U or V) of the given surface. Benefits include following the natural shape of the surface, freedom from having to select bounding geometries or curves, and fast calculation time.


Multi blade machining: Support for full collision check

For Multi blade machining, the **Tool axis control** tab now offers checkbox Use full collision check for Roughing and Hub finishing.

Options	Surface paths	Part definition	Tool axis control	Link	Edges	
- Tilting Prefer	red lead angle		5			
Min. le	ad angle		0			
Max.	ead angle		45			
Side ti	lt angle		30			
🗹 Us	e full collision che	eck				

Multi blade machining: Parameters for First cut

In the Multi blade machining **Surface paths** tab, new parameters under First cut allow you to set a different spindle speed and/or feedrate for the first cuts in a new layer.

Multi blade machining: Separate selection of blades and fillets

For Multi blade machining, the **Part definition** tab now lets you select blades and fillets independently. This improves the quality of the toolpath by separating the given information, yielding a result closer to contour roughing with bull nose and flat tools.

C	Options	Surface paths	Part definition	Tool axis control	Link	Edges	
	Part de	efinition		•			
ſ	Blades	s, splitter		Stock to leave		0	
	Fillets						
	Hub			Stock to leave		0	

Multiaxis: Rest finishing

Multiaxis machining now offers a new machining pattern: Rest finishing. This new mode adds finish cuts along the containment curve. The containment can be the boundary around the entire machining surface (for example, wall or floor surface) or an automatic or user-defined containment around an unmachined area. These additional cuts remove scallops on the boundary of the infill pattern.

Options Surface paths Part definition Too Calculation based on Multiaxis mach Pattern	ining ~	
Machining	Rest finishing 🗸	
Mode	Inside containment \checkmark	
Guide curve (areas dose to floor) Guide curve (other areas)	Floor boundary \checkmark Medial axis \checkmark	
Sorting Cutting method	Zig zag V	
Direction for one way machining	Climb ~	

Multiaxis Roughing: Part definition of Fixture surfaces

When using the Roughing pattern of Multiaxis machining, the **Part definition** tab now lets you identify Fixture surfaces, so that toolpath calculation will avoid collisions with tools, clamps, jaws, etc.

Options	Surface paths	Part definition	Gouge check	Link	Roughing	Utility					
Part de	efinition										
Part s	urfaces		Stock to lea	ave	0.5						
Floor s	surfaces		Stock to lea	ave	0						
Fixture	e surfaces		Stock to lea	ave	2			H			
									_	_	

Multiaxis Roughing / Links > Retracts: Interpolation tilt angles

When using the Roughing pattern of Multiaxis machining, new options in the Retracts dialog let you define discrete Angle step parameters that determine the angle that will be respected during tool transitions along the retract links. You decide the exact values to be used for link movements.

Multiaxis Finishing: Support for Multiple Surfaces

In all finishing patters of Multiaxis machining, you can now create toolpaths on multiple unconnected surfaces within one operation with the same tools and settings, increasing programming performance and reducing interoperation linking.

Rotary machining > Utility: Feedrate for links

For Rotary machining, the **Utility** tab now offers new options for setting feedrate for different link movements. The first option lets you override the rapid feedrate with a user-defined feedrate. Other options let you define feedrates for direct or blend spline links. Benefits include:

- Instead of using the exact stop G00 movements, you can now override these with feedrates to create smooth machine movements.
- You have control over individual direct and blend spline links. Depending on the application, this can either reduce the cycle time or enable lower feedrates on links for slot cuts.

Options	Surface paths	Part definition	Link	Clearance	Utility					
	rate control se rapid feedrate	2								
	rate for links rea links			1016	r	nm/min		(A	R	
	nks between slice			1016	r	nm/min				
∠Li	nks between regi	ons		1016	г	nm/min				

Rotary machining: Part definition > Containment

For Rotary machining, the **Part definition** tab now offers a new option: Containment. This lets you select 3D or 2D curves that define the containment area of the toolpath. You can add offset values with a positive or negative range, and you can invert the containment area.

Options	Surface paths	Part definition	Link	Clearar	nce I	Utility	
Part	definition						
Parts	urface				Stoc	k to leave	0
	Axis o	frotation					
	Cor	ne angle					
	Mach	ining area					
	Stock	definition					
	Fi	Itering				_	
	Con	tainment					
_							

-Surface quality

Rotary machining: Depth steps

For Rotary machining, the **Surface paths** tab offers options under Depth steps: Constant depth-step and Adaptive depth-step. These let you use additional cuts in combination with a constant depth step.

Depth steps						
Constant depth-step	\sim					
Distance	1.27					
Additional cuts on floors						
Advanced						

Rotary machining: Filtering out small regions

For Rotary machining, in the Part definition tab, the new **Filtering** dialog let you filter out toolpath regions that are smaller then the threshold values you specify.

Options	Surface paths	Part definition Link	Clearance Utility						
	finition		Filtering						
Part su	rface								
			Filter out	Regions ~					
			Type Inscribed circle \vee						
	Axis o	of rotation	Threshold value in % of tool	diameter 0					
	Cor	ne angle	Filter out contours shorte	r than					
	Mach	ining area	% of tool diameter	. 5	$\left(\left(\bigcirc \right) \right)$	601			
	Stock	definition	as value	0		Sec. and			
	Fi	ltering	Avoid trimming in case gap size is smaller than						
	Con	tainment	% of tool diameter	۰ 5					
Surfac	e quality		as value	0					
Cut tol	erance	0.013	Trim only full contours						
Max. point distance 0.508			Ensure finish cut						
Max. angle step 3									
					OK	Cancel			

Deburring: Limit edge detection area to Mesh containment bodies

In Deburring > Surface paths > Edge definition, the Advanced auto edge detection dialog now lets you select one or more mesh containment bodies, where each containment body is a closed mesh. The only edges that will be machined are those inside the selected containment body or bodies. This feature makes it easier to select the areas to be machined, and it speeds up programming.

Options Surface paths Tool axis control Li	nk	
Calculation based on Deburring Geometry input Part surfaces	to detect Advanced	
Path parameter Edge sh Advanced auto edge detection		Sector A se
Number	15 0	
Limit detection area	by Mesh ~	
Surface Cut tole Include unsharp edges		

Deburring: Spiralize closed contours

In Deburring > **Surface paths** > Path parameter, when Number of cuts along edges is >1, new option Spiralize closed contours allows multiple cuts to use a spiral pattern on closed contours. This avoids stepover marks on the deburred edge, resulting in smoother toolpath and less machine movement.

5-Axis

Options Surface paths Tool axis contro	l Link		
Calculation based on Deburring Geometry input		~	
Part surfaces			
Edge definition	Auto detect	 Advanced 	
Exclude edges			
Check surfaces	E		
Check surfaces dearance		0	
Path parameter			
Edge shape	Constant width	v 0.508	2
Inner corners	Trim	1	
Number of cuts along edges	Flat	/ 3	
Spiralize closed contours			-
Extensions/Overlap			

Wireframe > Link tab > Retracts: Automatic clearance height

For all Wireframe patterns, the **Retracts** dialog now offers a new Automatic choice for Height, to automatically define clearance plane height according to the range of the specified machining height and the spatial orientation of the given curves. This makes it easier to control the clearance area.

Options Surface paths Too	al axis control Gouge check Link Roughing Utility
	Retracts
First entry Approact Last exit Retract t	Home position X 0 Y 0 Z 182.88
Area links Within group Direc	Clearance area Type Plane V Direction Z axis V
Between groups Retra	Height Automatic
Links between slice	řA
Links between regions Retra	Advanced options for clearance area Interpolation tilt angles Keep initial orientation until distance 0
Retracts	

Wireframe Engrave: Lead-In Type Vertical profile ramp

For Wireframe pattern Engrave, the **Link** tab offers a new Lead-In type: Vertical profile ramp. This lets you define a vertical profile ramp entry in the material that follows the shape of first toolpath contour until it reaches a specified length and height, making it easier to control the approach motions.

Options Surface pat	hs Tool axis control Gouge che		·			
Default Lead-In/Out						×
Lead-In Type Vertical Tool axis orientation Definition	Fixed V	<< Copy	~	Lead-Out Type Vertical Tool axis orientation Definition	Profile ramp ~	~
Length	25.4			Length	25.4	

Wireframe 2-Axis Rough: Intermediate Slices

For Wireframe 2D/2.5D roughing, the Depth step Advanced dialog lets you add intermediate slices to reduce the staircase effect and optimize 2.5D parts using the draft angle feature. Benefits include:

- Less material is left when using smaller tools for rest-roughing.
- A uniform thickness is used for semi-finishing toolpaths.
- A uniform tool load is placed on semi-finishing tools.
- More stock removal with larger tools and fewer steps.
- Faster rough machining.

Intermediate slices are rest-roughed. Additional offset passes are added if there is a lot of remaining stock, so as to avoid excessive load on the cutter.

Options Surface paths Tool axis control	Souge check Link Roughing Utility
Calculation based on Wireframe	✓
2 Axis Rough	✓ 2.5D
User defined features	Type Offset V
Drive curves	
Heights	Depth step
DHC	Constant depth step 1.27
Profile pass	O Number of slices 5
Profile pass	
	Advanced
Offset 0	💽 Depth step ?
	First depth step 0
	Final depth step 0
	Value
	□ Floor finish
	Constant depth step 0.5
	Number of sizes

Triangle Mesh

Adaptive Roughing: Remove stock pillars

Roughing tab (Triangle Mesh> pattern Rough, type Adaptive) > Advanced: Remove stock pillars. This option improves adaptive roughing toolpath for machining open regions. Using standard settings, adaptive roughing for open areas can create a pillar at the center of the region in in-process stock. Remove stock pillars solves this problem by leaving a pillar at the center during adaptive roughing and then removing the pillar later by means a spiral ramp motion for better cutting conditions and tool life.

Options	Surface paths	Tool axis control	Gouge check	Link	Roughing	Utility					
	Stock def	inition									
	Advan	ced									
Appr	Advanced										🖷 X
Ram	Auvinceu										
Ram											
								\square			
<u> </u>	Stepover										
-Pre-		nt desired stepove	er								
									1		
	Smoothing										
Adap	Minimal curv	ature radius				1.016	7				
Link						L					
Link										2)))))	
	Thin wall pro	cessing									
	Thin wall	rollover									
Adar											
	Break throug										
	Over ma	cnine stock pillars									
	Overlap thre					1	7				
							_				

Adaptive Roughing: Over machine

Roughing tab (Triangle Mesh> pattern Rough, type Adaptive) > Advanced: **Over machine**. This option enhances adaptive roughing toolpath to optimize milling conditions for hard metal milling. It changes the shape of toolpath slices to compensate for tool deflections due to high cutting forces. Preventing thin walls generated by tool deflections lets you avoid vibrations and chatter, prevent thin stock from damaging the tool and spindle, and avoid defects in the workpiece.

Options Surfa	face paths Tool axis control Gouge check Link Roughing Utility	
	Stock definition	
	Advanced	
Approa Ac	dvanced	🖻 🗙
Ramp t		
Ramp a		
🗹 Cer		_
	Stepover	
Pre-dril	Dependent desired stepover	
	Smoothing	
Adaptiv	Minimal curvature radius 1.016	
Link de		
Link ler		
Saf	Thin wall processing	
Adaptiv	Thin wall rollover	
Ver	Break through overlap	
	Remove stock pillars	
	Overlap threshold 1	

Parallel cuts: Exclude flat areas

Triangle Mesh pattern Parallel cuts > Area: Exclude flat areas lets you exclude flat areas while machining a part with spherical or bullnose cutters, thus optimizing machining time. A separate flatlands toolpath can be applied to such areas using an endmill or facemill tool.

Options Surface paths Tool axis co	ontrol Gouge check Link Roughing Utility	
Calculation based on Triang	le mesh 🗸	
Parallel cuts	✓ ☐ High speed	
Machining surfaces Heights DHC	Machining angle in X,Y 0 Multiple passes on full width cut	
Offset type Global 0	~	
Area		
Trim to flute length		Surface quality
Undercuts	Exclude flat areas	Cut tolerance 0.0125
Corner deanup	Filtering	
2d Containment	Rest finishing	
Angle range	Silhouette containment	Advanced

Constant Z Undercuts: Machine flatlands

Triangle Mesh pattern Constant Z > Area > Undercuts: New option Machine flatlands enhances the machining of flat areas in undercut regions by detecting the exact Z height of the flat areas. Using slot mills, you now have the option to machine flats at the top, bottom, or on both sides of the undercut areas. Additional toolpath slices are generated on the flat regions of the undercut area, using outside-in ordering to remove the material gradually.

			?	X
th step			?	×
	0			
al depth step	0			
le				
			_	
	_			
chine flatlands Top Top Bottom Both				
	Top Bottom	t depth step al depth step but but but but but but but but but bu	t depth step 0 al depth step 0 ue thine flatlands	th step ?

Rough: Minimum depth step

Triangle Mesh pattern Rough > Depth step > Advanced: New option Minimum depth step filters out all intermediate slices that have a depth step smaller than the user-defined threshold for the minimum depth step, to enhance cutting conditions during roughing and reduce vibration and chatter.

Options Surface paths To	ol axis control Gouge check Link F	Roughing Utility	
Calculation based on Pattern	Triangle mesh \sim		
Rough	~		
	Type Offset	\sim	
Machining surfaces			
	_		
Heights	Depth step		
DHC	 Constant depth step 	1.27	
Profile pass	O Number of slices	5	SHPROGRAM CONTROL
Offset type Global	~	vanced	A A A A A
Offset		vanced	
	Depth step		<u> </u>
Area	First depth step	0	Regular slice
	Final depth step	0	Y
Undercut		0	
Rest roug	Value		Regular slice
2d Containm			↑? <u>↑</u> <u>×</u>
Fixture curv	_	1	
Fixture cur	✓ Intermediate slices		Regular slice
Sorting	 Constant depth step 	0.635	
Reverse cutting order	Number of slices	0	
Cutting method	Minimum depth step	0.635	
	Machine flatlands		
Direction for one way mach	Flat tolerance factor	4	

Flatlands: Undercuts

Triangle Mesh pattern Flatlands > Area: New option Undercuts makes it possible to machine undercut flat areas on a part using slot mills. Additional toolpath slices are generated on the flat regions of the undercut area, using outside-in ordering to remove the material gradually.

culation based on attern	Triangle mesh	× ,	🗹 Advar	NUCU		
latlands		~				-
	Туре	Offset	~			
Machining surfaces						
Heights						
DHC						
feet	0					
	0					
	0	width	1			
ffset ea] Undercuts	Minimum	width	1 100		Surface quality	0.05

Link tab / Retracts: Radial clearance

In the **Retracts** dialog, you can now specify additional clearances for retract links. The tool is expanded by the specified values, which are used for link checking on collisions. If the retract link height is not sufficient to avoid collisions with the expanded tool, then it is automatically adjusted. *Result:* Links stay farther away from the wall, preventing potential collisions against unmachined remaining stock.

Options Surf	face paths Tool axis control Gouge check Link	k Roughing Utility
Entry/Exit		
First entry	Approach from clearance area	✓ Don't use ramp ✓
Last exit	Retract to clearance area	~
	Retracts	🔤 ×
	Home position	
Area links –	X 0 Y 0	Z 182.88
Within group	Clearance area	
Between gro	Type Plane	
	Direction Z axis	
Links betwe		
	Height User defined	v 152.4
Links betwe		
	Advanced options for clearance area	
	Skip default fallback sequence	
	Interpolation tilt angles	
Retra	Keep initial orientation until distance	0
	Retract after Max. depth	1.27
	Distances Distances Previous Z-Height V	Radial dearance
	Rapid distance	20.32 Feed 0
	Entry feed distance	10.16 Rapid 0

Roughing tab / Advanced: Shift distance (stepover %)

In the **Roughing** tab for Triangle mesh roughing patterns, option Start points provides a way to shift the start point for subsequent cuts by a defined value. This provides a smoother transition to the next pass, resulting in faster milling times because of less deceleration/acceleration during machining.

Options	Surface paths Tool axis co	ntrol Gouge check Link	Roughing Utility	/			
	Stock definition Advanced						
Appro	Advanced						🖷 🗙
Ramp							
Ramp) a						
⊡ C	er						
A	Childed ang						
Pre-d		Smooth distance (stepover	r %)	20			
	Smooth links					\neg \square	
	Smooth final contou				III I I \	$\rightarrow \rightarrow \downarrow$	
	Minimize links	Shift distance (stepover %	6)	50	$\square \cup \frown$	\rightarrow	
			Г				
	Use lead-outs	Lead-outs radius in % of s	tepover	50			
	Remove corner peg	JS Line	e-Arc-Line	\sim			
						OK	Cancel